87 research outputs found

    Dendritic spinules in rat nigral neurons revealed by acetylcholinesterase immunocytochemistry and serial sections of the dendritic spine heads.

    Get PDF
    Dendritic spinules of rat nigral neurons were visualized at electron microscopic level by acetylcholinesterase immunocytochemistry and serial sections of the nigral dendrites. The spinules (at least 150 nm in length and 10-20 nm in width) which protruded from the spine heads are found in extracellular space in the neuropil and particularly between nerve terminals of the presynaptic neurons and fine glial processes. The nigral spinules are, however, not observed as invaginated processes in the nerve terminals. The dendritic spinule may be endowed with synaptic plasticity and metabolic exchange between nerve terminals and glial processes

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals

    Membrane microdomain switching: a regulatory mechanism of amyloid precursor protein processing

    Get PDF
    Neuronal activity has an impact on Ī² cleavage of amyloid precursor protein (APP) by BACE1 to generate amyloid-Ī² peptide (AĪ²). However, the molecular mechanisms underlying this effect remain to be elucidated. Cholesterol dependency of Ī² cleavage prompted us to analyze immunoisolated APP-containing detergent-resistant membranes from rodent brains. We found syntaxin 1 as a key molecule for activity-dependent regulation of APP processing in cholesterol-dependent microdomains. In living cells, APP associates with syntaxin 1ā€“containing microdomains through X11ā€“Munc18, which inhibits the APPā€“BACE1 interaction and Ī² cleavage via microdomain segregation. Phosphorylation of Munc18 by cdk5 causes a shift of APP to BACE1-containing microdomains. Neuronal hyperactivity, implicated in AĪ² overproduction, promotes the switching of APP microdomain association as well as Ī² cleavage in a partially cdk5-dependent manner. We propose that microdomain switching is a mechanism of cholesterol- and activity-dependent regulation of APP processing in neurons

    Remodeling of Monoplanar Purkinje Cell Dendrites during Cerebellar Circuit Formation

    Get PDF
    Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry

    Microtubule-associated protein tau is essential for long-term depression in the hippocampus

    Get PDF
    The microtubule-associated protein tau is a principal component of neurofibrillary tangles, and has been identified as a key molecule in Alzheimer's disease and other tauopathies. However, it is unknown how a protein that is primarily located in axons is involved in a disease that is believed to have a synaptic origin. To investigate a possible synaptic function of tau, we studied synaptic plasticity in the hippocampus and found a selective deficit in long-term depression (LTD) in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi knockdown of tau in vitro. We found that the induction of LTD is associated with the glycogen synthase kinase-3-mediated phosphorylation of tau. These observations demonstrate that tau has a critical physiological function in LTD.A.T. was supported by the research funding for longevity sciences (23-39) from National Center for Geriatrics and Gerontology, and the Strategic Research Programme for Brain Science ('Integrated Research on Neuropsychiatric Disorders') and Grant in Aid for Scientific Research on Innovative Areas ('Brain Environment') from the Ministry of Education, Science, Sports and Culture of Japan. K.C., D.J.W. and G.L.C. were supported by UK Wellcome Trust-MRC Neurodegenerative Disease Initiative Programme. K.C. was supported by the Korea-UK Alzheimer's Disease Research Consortium programme from the Ministry of Health and Welfare (Korea). G.L.C. was supported by the WCU Programme (Korea). I.S. was supported by the British Council. The collaboration between K.C. and A.T. was supported by a Sasakawa Foundation grant awarded to K.C. K.C. was supported by the Wolfson Research Merit Award and the Royal Society, London

    Slitrk2 deficiency causes hyperactivity with altered vestibular function and serotonergic dysregulation

    Get PDF
    SLITRK2 encodes a transmembrane protein that modulates neurite outgrowth and synaptic activities and is implicated in bipolar disorder. Here, we addressed its physiological roles in mice. In the brain, the Slitrk2 protein was strongly detected in the hippocampus, vestibulocerebellum, and precerebellar nucleiā€”the vestibular-cerebellar-brainstem neural network including pontine gray and tegmental reticular nucleus. Slitrk2 knockout (KO) mice exhibited increased locomotor activity in novel environments, antidepressant-like behaviors, enhanced vestibular function, and increased plasticity at mossy fiberā€“CA3 synapses with reduced sensitivity to serotonin. A serotonin metabolite was increased in the hippocampus and amygdala, and serotonergic neurons in the raphe nuclei were decreased in Slitrk2 KO mice. When KO mice were treated with methylphenidate, lithium, or fluoxetine, the mood stabilizer lithium showed a genotype-dependent effect. Taken together, Slitrk2 deficiency causes aberrant neural network activity, synaptic integrity, vestibular function, and serotonergic function, providing molecular-neurophysiological insight into the brain dysregulation in bipolar disorders

    Enriched Expression of Serotonin 1B and 2A Receptor Genes in Macaque Visual Cortex and their Bidirectional Modulatory Effects on Neuronal Responses

    Get PDF
    To study the molecular mechanism how cortical areas are specialized in adult primates, we searched for area-specific genes in macaque monkeys and found striking enrichment of serotonin (5-hydroxytryptamine, 5-HT) 1B receptor mRNA, and to a lesser extent, of 5-HT2A receptor mRNA, in the primary visual area (V1). In situ hybridization analyses revealed that both mRNA species were highly concentrated in the geniculorecipient layers IVA and IVC, where they were coexpressed in the same neurons. Monocular inactivation by tetrodotoxin injection resulted in a strong and rapid (<3 h) downregulation of these mRNAs, suggesting the retinal activity dependency of their expression. Consistent with the high expression level in V1, clear modulatory effects of 5-HT1B and 5-HT2A receptor agonists on the responses of V1 neurons were observed in in vivo electrophysiological experiments. The modulatory effect of the 5-HT1B agonist was dependent on the firing rate of the recorded neurons: The effect tended to be facilitative for neurons with a high firing rate, and suppressive for those with a low firing rate. The 5-HT2A agonist showed opposite effects. These results suggest that this serotonergic system controls the visual response in V1 for optimization of information processing toward the incoming visual inputs

    Paraneoplastic Antigen-Like 5 Gene (PNMA5) Is Preferentially Expressed in the Association Areas in a Primate Specific Manner

    Get PDF
    To understand the relationship between the structure and function of primate neocortical areas at a molecular level, we have been screening for genes differentially expressed across macaque neocortical areas by restriction landmark cDNA scanning (RLCS). Here, we report enriched expression of the paraneoplastic antigen-like 5 gene (PNMA5) in association areas but not in primary sensory areas, with the lowest expression level in primary visual cortex. In situ hybridization in the primary sensory areas revealed PNMA5 mRNA expression restricted to layer II. Along the ventral visual pathway, the expression gradually increased in the excitatory neurons from the primary to higher visual areas. This differential expression pattern was very similar to that of retinol-binding protein (RBP) mRNA, another association-area-enriched gene that we reported previously. Additional expression analysis for comparison of other genes in the PNMA gene family, PNMA1, PNMA2, PNMA3, and MOAP1 (PNMA4), showed that they were widely expressed across areas and layers but without the differentiated pattern of PNMA5. In mouse brains, PNMA1 was only faintly expressed and PNMA5 was not detected. Sequence analysis showed divergence of PNMA5 sequences among mammals. These findings suggest that PNMA5 acquired a certain specialized role in the association areas of the neocortex during primate evolution
    • ā€¦
    corecore